Problem
A perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. A divisor of an integer x
is an integer that can divide x
evenly.
Given an integer n
, return true
if n
is a perfect number, otherwise return false
.
Example 1: Input: num = 28 Output: true Explanation: 28 = 1 + 2 + 4 + 7 + 14 1, 2, 4, 7, and 14 are all divisors of 28.
Example 2: Input: num = 7 Output: false
Constraints:
1 <= num <= 108
Solution
Brute Force - O(n) time - O(1) space
class Solution {
public:
bool checkPerfectNumber(int num) {
int sum = 0;
for (int i = 1; i < num; i++) {
if (num % i == 0) sum += i;
}
return sum == num;
}
};
Square Root - O(n) time - O(1) space
Minimize the steps by adding both divisors at once. Minimize search space by going up to the square root of the number.
class Solution {
public:
bool checkPerfectNumber(int num) {
if (num <= 1) return false;
int sum = 1;
for (int i = 2; i <= sqrt(num); i++) {
if (num % i == 0) {
sum += i;
if (i != num / i) sum += num / i;
}
}
return sum == num;
}
};